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Bebek, Istanbul, Turkey 

WILLIAM P. PIERSKALLA 
Leonard David Institute of Health Economics 

Colonial Penn Center 
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Philadelphia, Pennsylvania 191 04 

Abstract: In recent years, there has been much discussion about the issue of regionalization of blood 
banking systems. In this work we focus on the transportation location-allocation aspects of regionalization. 
We are given the locations and expected blood requirements of a set of N hospitals. Each hospital is t o  be 
assigned to a regional blood bank which will periodically supply the hospital's expected blood requirement 
for the period, as well as supply its emergency blood demands at the time of the emergency. The blood 
shipments are to be made by special delivery vehicles which have given capacities and given limits on the 
number of deliveries they can make per day. We present algorithms to  decide how many blood banks to  
set up, where to locate them, how to allocate the hospitals to  the banks, and how to route the periodic 
supply operation, so that the total of transportation costs (periodic and emergency supply costs) and the 
system costs are minimum. The algorithms are tested on data from the Chicago area where very good 
results are obtained. 

Blood banks are an important and integral part of health 
service systems. Their main functions are blood procurement, 
processing, cross-matching, storage, distribution, recycling, 
pricing, quality control and outdating. The large blood 
banks are often also responsible for blood research, disease 
and reaction prevention. In recent years, there has been 
much discussion on the issue of regionalization of blood 
banking systems, in the hope of decreasing shortages, out- 
dates and operating costs, without sacrificing blood quality, 
research and education. 

In a broad sense, regionalization is a process by which 
blood banks within a given geographical area move toward 
the coordination of their activities. Such coordination may 
range from cases in which the blood banks merge into a 
large, centralized unit, to cases where the existing structure 
remains unaltered and only certain functions, such as donor 
recruitment, processing and distribution, are coordinated 
among the blood banks. In most of these cases questions of 
optimal region size, central and local bank locations, regional 
boundaries, optimal distribution and communication net- 
work configurations must be answered. Also, administrative 

Rece~vcd March 1978; revised July 1978; February 1979. Paper was 
handled by Applied Optimization Department. 

policies, ordering and crossmatching policies, and donor re- 
cruitment and component therapy strategies must be 
analyzed and coordinated. (See Cohen et al. [ I1  J for a de- 
tailed discussion of the advantages, disadvantages, benefits 
and costs of regionalization.) 

In this paper we focus on the location-allocation-trans- 
portation aspects of regionalization. Our variables will be 
central bank locations, regional boundaries and blood distri- 
bution network configurations. In the model below, all the 
other aspects of regionalization are summarized by the 
terms, system costs, which are primarily functions of two 
factors: the number of hospitals in a region and the amount 
of blood used by each hospital in the region. Both of these 
factors are functionally related to  the variables considered 
in the location-allocation-transportation model (since they 
vary with the regional boundaries). The other factors that 
affect the nontransportation aspects of regionalization tend 
to be independent of the variables in the model, conse- 
quently they are independent of the location-allocation- 
transportation decisions. 

This research was partially supported by Grant DHEW-HS00786 
and 5 ROI HS02634 from the National Center for Health Services 
Research, OASH. 
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The regionalization model is verbally described as follows: 
"Within a given geographical area, there are N hospitals. 
Regionalization is to be achieved by dividing the area into 
M regions and establishing a central blood bank in each 
region. All blood banking activities in a region are to be 
coordinated. Supply generation is to be done mainly by 
each central bank and each hospital is to obtain its primary 
blood supply from the central bank in its region. The blood 
distribution operation consists of periodic and emergency 
deliveries. The hospitals in a region receive their periodic 
daily requirements from their central bank. The blood 
deliveries are made by vehicles which, starting from the 
central bank, visit one by one the hospitals they are 
scheduled to  supply, and return to the central bank. These 
vehicles have given capacities and given limits on the number 
of deliveries they can make per day. Because of the wide 
fluctuations in demand, a hospital may deplete certain 
blood types before the next periodic delivery is due. In that 
case, a delivery vehicle is dispatched immediately, from its 
central bank. The delivery vehicle makes an emergency 
blood delivery to that hospital and returns to  the blood 
bank. The problem is to decide how many central blood 
banks to set up, where to  locate them, how to allocate the 
hospitals to the banks, and how to route the periodic supply 
operation, so that the total of transportation costs (periodic 
and emergency supply costs) and the other system costs are 
a minimum." This problem will be called the Blood Trans- 
portation-Allocation Problem (BTAP). 

In modeling the BTAP it is necessary to describe the 
costs as functions of the decision variables. The periodic 
delivery costs, which are a set of linear terms, depend on all 
three types of variables in this problem, that is, routing the 
periodic supply operations, locating the banks, and allocat- 
ing the hospitals. The emergency costs are also a set of linear 
terms and depend on only two types of variables, locating 
the banks and allocating the hospitals. The system costs are 
nonlinear functions of the size of the blood banks and the 
number of hospitals allocated to the blood banks, and there- 
fore, of all the variables in this problem they depend only 
on hospital allocations. So, if the system costs were constant 
and the emergency costs were negligible, the model would 
be equivalent to the General Transportation Problem (GTP) 
(see Or, [33] or Magnanti et al., [32]). If the system costs 
were constant and the periodic delivery costs were negligible, 
the model would reduce t o  a Location-Allocation problem 
(LAP) (see Cooper 112, 131, Hurter and Wendell [42, 431 , 
or Francis and White [IS]. So the model is a complex 
combination of these two large problems. The basic strategy 
we use in order t o  obtain a good solution depends heavily 
on these two subproblems. We solve each subproblem inde- 
pendently and then combine them at the end, making trade- 
offs between them and superimposing the system costs 
considerations, to  obtain a good solution to the model. 
However, it should be noted that, unlike the GTP, solving 
the LAP does not produce a complete, feasible solution to 
the main model. It only gives the locations and the alloca- 
tions, and in order to get the missing periodic delivery 
routes, one must solve a set of vehicle dispatch problems. 

Other work on regionalization or centralization of blood 
bank activities has not looked at the location-allocation- 
transportation aspects. Jennings [23,24] used a simulation 
model to construct part of a regional blood banking system. 
He grouped a number of identical hospitals together; how- 
ever, he did not have a central blood bank. Transshipment 
policies and inventory levels were studied to see their impact 
on shortages and outdates. Yen [46] also studied multi- 
echelon inventory systems. He concentrated his efforts on 
the optimal inventory levels and the optimal issuing policies. 
Prastacos [38] and Prastacos et al. [37] were interested in 
the allocation of existing stocks among the hospitals. Neither 
Jennings, Yen nor Prastacos et al. studied the location of 
central banks or the allocation of hospitals to them. 

The Blood Transportation-Allocation Model 

Because the BTAP is a complex optimization problem, we 
will make a few reasonable assumptions to decompose the 
problem into smaller subproblems. 

ASSUMPTION 1 : The number of banks, M, is a given con- 
stant number. 

Even in cases in which the above assumption does not 
hold,M is almost always restricted to a small, finite, feasible 
set (M is always an integer and 1 < M < N). So, in those 
cases one could solve the problem for each feasible value of 
M to get the optimal solution. In this respect, assumption 1 
is not restrictive. 

ASSUMPTION 2: The blood delivery period is daily for 
each hospital and is an input parameter to 
the BTAP. 

Considering that some hospitals use more than7000 units 
of blood per year, while some others use less than 10, this is 
an unrealistic assumption. Unfortuantely, determining the 
optimal multiple delivery periods as well as the location- 
allocation and routings increase the complexity of the prob- 
lem considerably and make it almost impossible to  find a 
direct solution procedure. A simple, multiple period prob- 
lem should have three options for the periodic deliveries 
(daily, biweekly, weekly). However, the problem of choos- 
ing optimal periods for each hospital would be very large 
(and time consuming) combinatoric process. If the periods 
are set in advance (daily, biweekly, weekly) these multiple 
periods can be easily incorporated into the present location- 
allocation model merely by adjusting the costs to  reflect 
costs per day. The routes of the delivery vehicles however 
would have to be adjusted later. 

ASSUMPTION 3: The potential locations of the M banks are 
given. 

Even in cases where this assumption does not hold, the 
set of feasible locations is almost always a small, finite set 
(usually one does not want to build a blood bank from 
scratch; instead, they are most frequently located in the 
area's largest hospitals or at existing blood centers). So, if 
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necessary, we could solve the problem for all combinations 
of feasible locations, to get the optimal solution. In a design 
problem, this is not an impossible enumeration, since even a 
region the size of the Chicago metropolitan area (using the 
amount of blood transfused as a measure of hospital size) 
has only six central blood banks and has only seven hospitals 
with consumption rates of over 7000 units per year. Most 
of the latter do not qualify to be central blood banks for 
various reasons. So, in this respect Assumption 3 is not very 
restrictive. 

The following notation will be used in formulating the 
BTAP. 

i) N is the number of demand points. 

ii) M is the number of supply points. 

iii) n is the maximum number of supply vehicles avail- 
able. 

iv) D = { H I ,  . . . , HN )is a set ofN demand points. 

v) S = { H N + l , .  . . , HN+M )is a set ofMsupply points. 

vi) H = D U S is the set of all points involved in the 
problem. 

vii) d i j  is the "distance" from Hi to Hi. It should be 
noted that although Euclidean distances among 
locations of hospitals and central banks are used in 
the solution procedure, one could obtain a matrix 
of accurate travel times between all pairs of hospi- 
tals and banks, and one could use this matrix or 
any other "distance measure" instead of the Eucli- 
dean distance matrix. 

viii) Ck, k = 1, . . . , n is the capacity of supply vehicle k. 

ix) Q ,  i = 1, . . . , N  is the requirement of demand 
point i. 

x) 4, k = 1, . . . , n is the maximum distance supply 
vehicle k may travel. 

xi) y ,  i = 1, . . . , N is the expected number of emer- 
gency deliveries to  hospital Hi per period. yi is the 
probability that the demand at Hi exceeds the 
supply at Hi given the optimal inventory level at 
Hi is used. 

xii) s(P, k) is the systems cost function of a region, 
where Q is the number of hospitals in that region, 
and k is the amount of blood used per year in that 
region. 

xiii) y i j , i = l  ,..., N ; j = N + l ,  ..., N+Misazero-one 
variable such that yii is 1 if hospital Hi is assigned 
to central bank 4 and is O otherwise. 

xiv) x i j k , i = 1  ,..., N + M , j = l ,  ..., N+M,k=l ,  ..., 
n is a zero-one variable such that xijk is 1 if 
vehicle k goes from hospital Hi to A 3 - and is 0 other- 
wise. 

The BTAP is: 

Problem 1 
N+M N t M  n N N+M 

subject to 
n N+M 

where S is any proper subset of H containing S and 3 is the 
complement of S. 

(note that xiik = 0) 

yii=O,l i l . . ,  j=N+l, ..., N+M. (9) 

The explanation of these constraint sets are as follows. 
Constraints (2) require that every hospital receive a ship- 
ment from some vehicle; (3) are the vehicle capacity con- 
straints; (4) are the maximum travel distance constraints 
(note, it is implicitly assumed that Qi < Ck for i = 1,. . . , N 
and k = 1, . . . , n); (5) require that graph d: corresponding 
to x  is connected; (6)imply that a vehicle departs from a 
point h if and only if it enters there (conservation of flow); 
(7) contains the coupling constraints between variables x = 
{xi jk}  andy = b i j } .  It means that if there is vehicle k 
passing from both hospital i ( ~ i : y ~ ~ ~ ~  = 1 )  and from 
bank j(~y=";" xjhk = 1) then hospital i is assigned to bank j 
bij 2 1 + 1 - 1 = I). 
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In Problem 1 the variables x = {xijk ) correspond to the 
routing of the periodic delivery vehicles and the variables 
y = Cyij) correspond to the allocations of the hospitals to 
the blood banks. For a given x = {xijk), y = CyG) is uniquely 
determined, but the converse is not true; if we are given the 
allocations, a series of M vehicle dispatch problems have to  
be solved, in order to  obtain the routings. Problem 1 has a 
finite feasible solution set and a nonempty optimal solution 
set. However, the underlying Multiple Vehicle Dispatch 
Problem (MVDP) makes it a complex integer programming 
problem. For N of any significant size (N > 20), the BTAP 
is too large to be solved by conventional mathematical pro- 
gramming techniques in a reasonable amount of time. In the 
following section we will introduce and discuss a good 
heuristic solution procedure for the BTAP. First, let us 
thoroughly examine the subproblems of the BTAP that we 
will be using in the heuristic approaches. 

In Problem 1, if -yi, i = 1, . . . , N are small or emergency 
costs negligible (actual yiYs range from .0002 to .06 when 
optimal ordering policies are followed, see Pierskalla and 
Yen [35 1 ) and the function s(Q, k) is essentially constant, 
then 

would be the dominating term in the objective function (1). 
Then we could just solve the MVDP, 

Problem 2 
N+M N+M n 

Inin C 2 2 dijxijk 
i=1 j=l k = l  

(1 1) 

subject to  n N+M 
C x x i j k  = 1 i = l ,  ..., N (12) 

k = l  j=l 

C 
n 

Z C xijk 1 for an (s, S )  (15) 
{i:Hi€s) G.:H~ES} k = i  

in order to obtain the optimal x* for Problem 1. The 
optimal allocations, y*, would then be uniquely determined 
by x*. 

On the other hand, if yi, i = 1, . . . , N are relatively 
large (which might happen under nonoptimal ordering poli- 
cies) or system costs and periodic delivery costs are negligi- 
ble, then 

N N+M 

would be the dominating term in the objective function. 
Then we could just solve the allocation problem, 

Roblem3 N N+M 
min C x 'Yidij~ij 

i = l  j=N+1 

subject t o  
N+M 

in order to get the optimal y o  for Problem 1. Then, optimal 
routings,xo, would be obtained by solving a vehicle dispatch 
problem for each one of the M regions determined by yo. 

Let x* be an optimal solution of Problem 2. Let y* be 
the allocations determined by x*. Let yo  be an optimal 
solution of Problem 3. Define P h b )  to be the set consisting 
of central bank N+h and the hospitals which it serves. Let 
PO)= {PlO),Pz@), 9 P m b ) }  suchthatHN+hEPhb)y 
h = 1 , .  . . ,M,HiE Ph@)ifandonlyifyi,N+h = 1 , i =  1 ,... 
N; h = 1, . . . , M.(It should be noted that u:, Pjb) = H 
andPjl(y)nPjzO.')=$,jl f jz;jl ,  j 2  = 1, .  . . ,M,forall y 
feasible in Problem 1 .) 

Let xO be the routings obtained by solving the following 
vehicle dispatch problem for h = 1, . . . , M (and renumber- 
ing the vehicles so that each corresponds to a different 
circuit). 

Problem 4 
n 

min C C C dijxijk (21) 
{ i : H , e ~ ~ ( y ~ )  } $:Hj€Ph(yO) ) k = i  

subject to 

xijk = 1 for all i such that Hi ePh(yO) 
k = l  $ :H~EP~Qo))  (22) 

-.- 
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Z C - xi,, z 1 for all (s. S )  (25) 
{~:H~Es } G:H~GS } k = 1  

where S is any proper subset of ph(yO) and Sitscomplement . 
Z XQI, = X i ~ k  for all P such that 

~ ) : H ~ E P ~ ( . V ~  )} {~:H~EP, (~")  ) (26) 

Hp €Ph(yO) and k = 1, .  . . , n 

I t  directly follows from the above definitions that 

and if the systems costs are essentially constant 

1, . . . , M" are ordered and executed. The first algorithm is 
reasonably fast, but the set of exchanges it tests is not very 
large; it tests the elements in U0.1,i2 >EXQ1, j2)only oneby 
one and independent of each other. The second algorithm 
tests a larger set, besides testing the elements in UGl, j2 1, 
EXQl, jz), it also tests many different combinations of 
them. Hence, the second algorithm produces a better solu- 
tion. ~nf&tunately, these latter tests are time consuming, 
and they slow down the algorithm considerably. Both of 
these algorithms were originally developed assuming no 
vehicle capacity constraints and no maximum number of 
stops per vehicle type constraints. In other words, constraint 
sets (3) and (4) of Problem 1 were assumed to be nonbinding 
bn which case, of course, the underlying MVDP reduces to  
the Mutliple Traveling Salesman Problem (MTSP)]. Then 
both algorithms were extended to  provide solutions to the 
BTAP also when the constraints on the vehicles were bind- 
ing. It should be noted that, in these algorithms heuristic 
procedures are employed to solve Problems 2 and 4. So, (x*, 
y*) obtained is not the optimal solution of Problem 2, but 
a near optimal solution. Similarly, xO is a combination of 
near optimal solutions obtained by solving Problem 4 for 
h = 1, . . . , M. Therefore, the inequality 

z2 (x*) =G z2 (x) for all x feasible for Problem 2 
would be a good lower bound on the optimal value of Prob- 
lem 1. 

Heuristic Solution Procedures for the BTAP 

Let EX(il, j2)  be the set of all hospitals such that Hi E 
EXGl, j2) if and only if Hi & S and Hi E Pjl(y*), Hi E 
4, QO). In other words Hi E EX(il, j2) means that hospital 
Hi would have been allocated to bank HN+jl ifonly periodic 
delivery costs were minimized, and hospital Hi would have 
allocated to bank HN+j2, if only emergency delivery costs 

were minimized. 
The basic idea behind the solution procedures that wiU 

be discussed in this section is fairly simple. First, the 
feasible solutions (x*, y*) and (xO, YO) of Problem 1, dis- 
cussed in the previous section, are obtained, Then, they are 
compared and for each pair Q1, j2), jl f j2;jl ,  j2 = 1, .  . . , 
M, hospitals Hi E EX(il, j2) are removed temporarily from 
Pi (y *) and inserted into Pj2 (y*). [Let us call this operation 
an exchange between sets Pjl(y*) and Pj2(y*)]. After each 
exchange, Problem 4 is solved for the two sets 4, @*) and 
4, (y*), under consideration, in order to obtain the corres- 
ponding components of the variable (x, y) of Problem 1. 
The components of (x, y)  corresponding to sets Pi@*), 
i # j l ,  j #j2 ,  are left unchanged. The resulting feasible 
solution, to Problem 1, is compared with the better of (x*, 
y*) and (xO, yo). If there is a decrease in the objective 
function value, z*(x, y), the exchange is made permanent. 
Then another exchange is considered and so on. 

Two algorithms have been deveioped, both based on the 
idea described above, and differing only in the way the 
exchanges implied by the sets "EX(i1, j2), jl SIj2, j l ,  j 2  = 

which is always true when x* is optimal, might not always 
hold in our heuristic approaches, since there X* is only 
"near optimal." 

Algorithm 1 

The following algorithm is a solution procedure for the 
BTAP, when the constraints on the vehicles [constraint sets 
(3) and (4) of Problem 11 are not binding. In this algorithm 
the sets EXQ',, j2 ) are ordered such that for all Hil, Hil+l E 

EXQI, j2) 

In other words the marginal decrease in the emergency 
delivery cost if Hil were to be placed in (y*) is greater 
than the decrease if Hi,+l were to be placed i n e l  (y 9. Then, 
each set EX(i,,j2), jl #j2, j l ,  j2 = 1, .  . . , M is considered 
one at a time. Starting with the first element, all elements of 
the set EX(jl, j2), under consideration, are, one by one 
temporarily removed from Pil(y*) and inserted'into Pj2 (J?. 
Then two traveling-salesman problems are solved for these 
two sets. The resulting feasible solution to Problem 1 is 
compared with (x*, y*) and (xO, if it is better, the 
change is made permanent. 

Assume the following parameters are given: the coordi- 
nates of N hospitals and M banks; the function s(R, k);the 
daily blood usage, Qi, in each hospital Hi; the period for 
the periodic deliveries; and the expected number of emer- 
gency deliveries yi for each hospital Hi in one period. Then 
the steps of algorithm 1 are as follows: 

90 AIIE TRANSACTIONS, Volume 11, No. 2 
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1 : Read in all the Data. 

2: Compute the distance matrix, D =idij), i = 1, . . . ,NtM, 
j =  I , .  .. ,NtM. 

3: For each hospital Hil , determine the closest bank HN+jl. 
Set yoil jl = 1. (This step will determine yo.) 

4: For each set Pj(yO), j = 1, . . . , M, solve the travel- 
ing salesman problem, using the convex hull algorithm or 
any traveling salesman algorithm available. The convex 
hull algorithm is given in Or [33] and in Or and Pierskalla 
[34]. (This step will determine xO.) 

5: Apply the multiple assignment algorithm or any multiple 
traveling salesman algorithm available to the given set of 
points. The multiple assignment algorithm is also given 
in the two references in step 4 above. (This step will 
determine y *.) 

6: For each set $03, j = 1 , .  . . ,My solve the traveling 
salesman problem, using the convex hull algorithm. (This 
step will determine x*.) 

7: Let z,in = rnin [z(x? y *), z(xO, yo)], where 

Note that z(x, y)  is just the objective function of Problem 
1 with the subscript k of x and summation over k deleted. 
Since there is only a single vehicle serving each supply 
point, this deletion does not affect the optimal value of 
Problem 1. 

I 8: a) Execute the following operations for each pair (il, j2), 
jl f jz , j l ,  j 2 = 1 , .  . . ,M.Whendone,goto9. 

b) Determine the set EXG1, j2), if it is empty go to 8a. 

c) Order EX(jl, j2) such that for all Hilt Hil+lEEXQl , 
j2)di1jl -di l  jl Gdil+t ,  jl -di l+l ,  jZ . 

d) Go to  8a. 

9 : a) Execute the following operations for each pair (jl, j2), 
jl # j z , j l , h  = 1, .  . . ,M.Whendone,goto 10. 

b) If EX(jl, j2)is empty, go to 9a. 

c) Remove the first element of EXQl, j2); let it be Hil . 
Define7 = C ; ; i j ) ~ ~ ~ h  that yil jl = O,yil jz = 1, and& - 
= y ij otherwise. 

d) Solve the traveling salesman problem for the setsq,_G) 
and Pjl 6 ) .  Store the resulting tours in 3 = {jS,i ) such 
that 
& = 1 if Hi E 4, G), 4q1 F) and the convex hull 

algorithm solution to Pjl 6) contains an edge 

between Hi and Hj. 
- 
xij = 0 if Hi€ 4 F), 3 ej G) and the convex hull 

solution to Pil (y) does not contain an edge 
between Hi and Hi. 

Xij= 1 if Hi €Piz G), 4 E P i 2  ) and the convexhull 
solution to  6) contains an edge between Hi 
and Hi - 

xij = 0 i f x i  €42 6) ,4 E Pi, 6) and the convex hull 
solution to  Pi does not contain an edge between 
Hi and Hi. 

- N 

xij = xij otherwise. 

e) Compare zmin with z(% 7). If zmin is smaller go to 9b; 
otherwise proceed. - - N - -- 

f) Update % and z,,. x = x, y =y, and zdn = Z(X, y). 

g) Go to 9b. 

10: All of the exchanges are completed, terminate. (z 3 
is the resulting near optimal solution;zmin'is the resulting 
near optimal value. 

In most applications, the above algorithm will produce a 
very good solution in a reasonable amount of time (see the 
next section for the actual execution times). However, in 
some extreme cases (i.e., cases in which most of the sets 
EX(jl, j2) are very large), it could be very time consuming, 
considering that two traveling salesman problems are solved 
after each exchange and there are as many exchanges as the 
total number of elements in the sets EX(jl, jd, jl #= j2; jl,jz 
= 1, .  . . ,M (i.e., thereare " Z ~ = ~ Z ~ = , I  EX(j1,h)l" ex- 
changes i z+i. 

Algorithm 2 

The following algorithm is a solution procedure for the BTPP, 
when the constraints on the vehicles are not binding. In this 
algorithm, the sets EX(j1, j2) are ordered such that for all 
Hip Hi+l€EXQl, j2) 

TheneachpairofsetsEX(jl, j2),EXG2, jl), 1 9jl <j2 < 
M are considered one at a time. The first elements Hi,, Hiz 
of the sets under consideration, EXQ1 , j2) and EX(j2, j l) ,  
respectively, are removed, and the following temporary 
exchanges are done in the given order: 

Hil ' is removed from Pj, (y*) and inserted into Pjz G*). 

Hil and one of the hospitals adjacent to it {adjacent in the 
graph defined by (?')I are removed from Pil (y*) and 
inserted into Pjz (y *). 

Hit and the other hospital adjacent to it [adjacent in the 
graph defined by (r)]  are removed from Pjl (y *)and 
inserted into Pjz 6~ *). 
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! I i ,  and both of the hospitals adjacent to it are removed 
from 4, of*) and inserted into P j 2  (y*). 

!Ii l  is removed from Pj2 (j*) and inserted into Pi, (y*). 

11i2 and one of the hospitals adjacent to it are removed 
fro111 Pj2 (y*) and inserted into Pi, (y*). 

Hi, and the other hospital adjacent to it are removed from 
Pj2 b*) and inserted intopi,@*). 

Hi2 and both of the hospitals adjacent to it are removed 
from Pj2 (y*) and inserted into Pi, (y*). 

After each exchange the new feasible solution to Problem 
1 is determined (as described in the previous section) and 
compared with (xO, YO), (x*, y*). If it is a better solution, 
the corresponding exchange is made permanent. This process 
is continued until both of the sets EX(il, j2), EX(i2, j , ) ,  for 
j,, j2 under consideration, are empty. (Details of this 
algorithm are given in Or [33]. 

Extensions of Algorithm 1 and Algorithm 2 

The algorithms presented in the previous section may be 
extended quite easily, to  provide solutions also in the cases 
in which the constraints on the vehicles are binding (i.e., the 
underlying multidepot problem is the MVDP rather than the 
MTSP). One possible extension would be to use the Gillett 
and Miller sweep algorithm instead of the convex hull 
algorithm in steps 4, 6, 9d of algorithm 1 and in algorithm 
2. Let us call this extension 1. Another extension would be 
to leave the first nine steps of the algorithm the same and 
change step 10 to: 

10: consider ?to be the near optimal allocations. For each 
set p j 6 ) ,  j = 1,  . . . , M, solve the vehicle dispatch prob- 
lem using the sweep algorithm. 

Let us call this last extension, extension 2. Notice that in 
extension 2 the sweep algorithm is applied only M times (in 
step lo), whereas in extension 1, it is applied M times in 
step 4, M times in step 6 and then twice after each exchange 
(it replaces the convex hull algorithm). Hence, as the sweep 
algorithm is slower than the convex hull algorithm, exten- 
sion 1 is slower than extension 2. 

Considering how large and complex the BTAP is, algo- 
rithms 1 and 2 and their extensions produce some very 
acceptable feasible solutions and give us some insights about 
the BTAP, as will be discussed in the next section. However, 
because of their size and complexity we should note that 
we do not really know how good (or bad) a solution we are 
getting from these algorithms. For example, we do not 
know whether the allocations, y(which were obtained for 
the MTSP and used in step 10 of extension 2, in solving the 
MVDP) are near optimal allocations for the MVDP or not. 
Similarly, we do not know how good the assignment for the 
MVDP will be since it also was developed for the MTSP. 
Also, the solutions from the sweep algorithm are not guaran- 
teed to be near optimal. These are all relevant shortcomings 

of our solution procedures and more research will be done 
to resolve them. (These algorithms and their extensions are 
available in Or and Pierskalla [34] ). 

Computational Results 

In this section we mention some of the results for the 
BTAP using the actual data for all hospitals in the Greater 
Metropolitan Chicago area. Fifteen cases were run to  obtain 
the solutions (x*, y *), (xO, yo), (% y), for different choices 
of bank locations and numbers. Algorithm 1, algorithm 2 
and extension 2 were applied and their performances com- 
pared. 

Average Execution Times 
Solution Obtained Time in Seconds on CDC 6400 

C 

(xO. YO) 3.6 

(x*, Y *) 9.5 

(% Y3 using algorithm 1 41.9 

(% F) using algoiithm 2 67.8 

MVDP using extension 2 3.2 
(given yo, y * or 7) 
Based on these cases, we can make a few interesting 

observations. 

1. Algorithm 2, which is far slower than algorithm 1, pro- 
duces very little significant improvement in the solution. 

2. The problem is insensitive to the parameter yi, i = 1, . . . , 
N. (Even for a large value for y, i = 1, . . . , N, the perio- 
dic delivery cost considerations always dominated the 
emergency cost considerations.) 

3. In the existence of binding capacity constraints, 7 pro- 
duces very little significant improvement over yo .  

These observations, provided that they hold in other 
cases in future research, imply that complex heuristics do 
very little over simple heuristics to improve the solution of 
the BTAP. Consequently, if the first observation is true in 
general, algorithm 2 may be abandoned with considerable 
savings in execution time. If the last observation is true in 
general, one might simply use the allocations given by yo,  
which are very easy to determine, in the solution procedure 
of the BTAP, and avoid all the complicated processes to 
obtain y * or The second observation reduces the need for 
accurate estimates for yi, the expected number of emergency 
deliveries to hospital Hi in one period. These observations, of 
course, require further testing. This effort is left for future 
research and data gathering in other regions of the country. 

As examples, the results of two of the fifteen cases are 
presented in Figs. 1 and 2 and Tables 1 and 2 respectively. 
These examples are representative of the other cases. In 
each example hospitals 1 , 2  and 3 (Northwestern Memorial, 
Michael Reese, and Rush-Presbyterian-St. Luke, respectively) 
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o indicates hospital 

x indicates central bank 

Connected paths indicates 
which hospitals are assigned 
to which central banks. 

Fig. 1.Allocation based on emergency, periodic, and system costs Fig. 2. Allocation based on emergency routing system costs metro- 
metropolitan Chicago inter-hospital blood transportation net- politan Chicago inter-hospital blood transportation network. 
work. 

were chosen for the central banks. This is because the deci- 
sion maker had a preference, external to the BTAP, for the 
banks to be located at those hospitals. All other cases and 
results may be found in Or [33]. 

Table 1: ldentification of hospitals assigned to central bank and 
the annual volume at each central bank shown in Fig. 1. 

Bank 1, Identification-Hospital 1 

Number of hospitals in the system 42 
Amount of blood used in the system 54 178 

Bank 2, Identification-Hospital 2 

Number of hospitals in the system 30 
Amount of blood used in the system 53524 

Bank 3, Identification-Hospital 3 

Number of hospitals in the system 45 
Amount of blood used in the system 84502 

Table 2: ldentification of hospitals and number of units delivered 
daily on each route and the annual volume at each 

central bank shown in Fig. 2. 

Bank 1. Identification-Hospital 1 
Routing 

Truck No. 1 Number of Stops: 20 Number of Units: 96 
Truck No. 2 Number of Stops: 20 Number of Units: 99 
Truck No. 3 Number of Stops: 1 Number of Units: 12 

Amount of blood used in the system: 54178 

Bank 2, Identification-Hospital 2 
Routing 

Truck No. 1 Number of Stops: 20 Number of Units: 132 
Truck No. 2 Number of Stops: 9 Number of Units: 63 

Amount of blood used in the system: 53524 

Bank 3, Identification-Hospital 3 
Routing 

Truck No. 1 Numbel of Stops: 20 Number of Units: 107 
Truck No. 2 Number of Stops: 20 Number of Units: 133 
Truck No. 3 Number of Stops: 4 Number of Units: 66 

Amount of blood used in the system: 84502 
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